Cargos and genes: insights into vesicular transport from inherited human disease.

نویسندگان

  • Paul Gissen
  • Eamonn R Maher
چکیده

Many cellular functions depend on the correct delivery of proteins to specific intracellular destinations. Mutations that alter protein structure and disrupt trafficking of the protein (the "cargo") occur in many genetic disorders. In addition, an increasing number of disorders have been linked to mutations in the genes encoding components of the vesicular transport machinery responsible for normal protein trafficking. We review the clinical phenotypes and molecular pathology of such inherited "protein-trafficking disorders", which provide seminal insights into the molecular mechanisms of protein trafficking. Further characterisation of this expanding group of disorders will provide a basis for developing new diagnostic techniques and treatment strategies and offer insights into the molecular pathology of common multifactorial diseases that have been linked to disordered trafficking mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axonal transport defects are a common phenotype in Drosophila models of ALS

Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of motor neurons resulting in a catastrophic loss of motor function. Current therapies are severely limited owing to a poor mechanistic understanding of the pathobiology. Mutations in a large number of genes have now been linked to ALS, including SOD1, TARDBP (TDP-43), FUS and C9orf72. Functional analyses of these genes an...

متن کامل

The ciliary rootlet interacts with kinesin light chains and may provide a scaffold for kinesin-1 vesicular cargos.

The ciliary rootlet is a large striated fibrous network originating from basal bodies in ciliated cells. To explore its postulated role in intracellular transport, we investigated the interaction between kinesin light chains (KLCs) and rootletin, the structural component of ciliary rootlets. We show here that KLCs directly interact with rootletin and are located along ciliary rootlets. Their in...

متن کامل

Building Complexity: An In Vitro Study of Cytoplasmic Dynein with In Vivo Implications

BACKGROUND Cytoplasmic dynein is the molecular motor responsible for most retrograde microtubule-based vesicular transport. In vitro single-molecule experiments suggest that dynein function is not as robust as that of kinesin-1 or myosin-V because dynein moves only a limited distance (approximately 800 nm) before detaching and can exert a modest (approximately 1 pN) force. However, dynein-drive...

متن کامل

To the editor. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology.

CLC genes are expressed in species from bacteria to human and encode Cl(-)-channels or Cl(-)/H(+)-exchangers. CLC proteins assemble to dimers, with each monomer containing an ion translocation pathway. Some mammalian isoforms need essential beta -subunits (barttin and Ostm1). Crystal structures of bacterial CLC Cl(-)/H(+)-exchangers, combined with transport analysis of mammalian and bacterial C...

متن کامل

Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons.

The neurotrophin brain derived neurotrophic factor (BDNF) is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer's disease (AD). To analyze the role of BDNF transport in AD, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical genetics

دوره 44 9  شماره 

صفحات  -

تاریخ انتشار 2007